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A number of recent papers have been concerned with the stochastic modeling of 
autocatalytic reactions. In some instances the birth and death model has been 
criticized for its apparent inadequacy in being able to describe the long-term 
behavior of the catalyst, in particular the fluctuations in the concentration of the 
catalyst about its macroscopically stable state. This criticism has been answered, 
to some extent, with the introduction of the notion of a quasistationary 
distribution; a number of authors have established the existence of limiting 
conditional distributions that can adequately describe these fluctuations. 
However, much of the work appears only to be appropriate for dealing with 
closed systems, for attention is usually restricted to finite-state birth and death 
processes. For open systems it is more appropriate to consider infinite-state 
processes and, from the point of view of establishing conditions for the existence 
of quasistationary distributions, extending the results for closed systems is far 
from straightforward. Here, simple conditions are given for the existence of 
quasistationary distributions for Markov processes with a denumerable infinity 
of states. These can be applied to any open autocatalytic system. The results 
also extend to explosive processes and to processes that terminate with 
probability less than 1. 

KEY WORDS:  Stochastic processes; quasistationary distributions; chemical 
kinetics. 

1. I N T R O D U C T I O N  

A number of authors have considered stochastic models for chemical reac- 
tions that terminate with the exhaustion of a particular species. Reactions 
involving autocatalysis comprise an important class of these and have been 
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studied extensively. Two common examples that have been considered 
are(1-6) 

A + X  e~ , 2X 

2X e2 ~ B 
(1) 

and (6<o) 

kl 
A + X  ~. ' 2X 

k i 

X k2 ) B 

(2) 

each system being open with respect to both A and B. It is clear that any 
stochastic model which properly accounts for the microscopic behavior of 
either reaction will predict eventual exhaustion of (the catalyst) X, unless, 
exceptionally, the quantity of X grows unboundedly. On the other hand, 
the usual deterministic models predict two stationary states, one unstable, 
corresponding to depletion of X, and the other stable. These models help to 
explain the apparent stationarity exhibited by the reactions, for they 
predict that after a relatively short time the system relaxes to the stable 
state, and then, after a very much longer period, it evanesces. (6'8'11) 
However, they do not provide information regarding the fluctuations about 
the stable state. These fluctuations can be adequately described, using a 
stochastic formulation, by considering quasistationary distributions and 
several authors have adopted this approach. (6's- 11) Oppenheim et al. (s) and 
Dambrine and Moreau (9'1~ base their analysis on a finite-state birth and 
death model, but this appears to be appropriate only when the system in 
question is closed. Their assumption, that the process has a finite collection 
of possible states, ensures that quasistationary distributions always exist 
and that these can be determined from the right and left eigenvectors of the 
matrix of transition rates (truncated appropriately) corresponding to the 
eigenvalue with maximum real part. 

For an infinite-state process, one that is appropriate for modeling 
open reaction systems, the situation is considerably more complicated. 
First, the transition rate matrix need not necessarily possess finitely many 
eigenvalues. Indeed, they may comprise a continuum, and positive eigen- 
vectors can be obtained for a range of eigenvatues that is, at best, a finite 
closed interval. It might also be the case that the matrix possesses no 
positive eigenvectors, and, even when it does, it might not be possible to 
determine whether or not quasistationary distributions exist. Thus, the 
progression from a finite-state model to an infinite-state one is far from 
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straightforward. The purpose of this paper is to provide conditions for the 
existence of quasistationary distributions for a continuous-time coun- 
table-state Markov process that are expressed solely in terms of its trans- 
ition rates. Parsons and Pollett (6) used a more stringent set of conditions in 
obtaining quasistationary distributions for reaction system (1). However, 
these are inappropriate when dealing with processes that terminate with 
probability less than 1. The conditions I provide are quite adequate for 
dealing with this case. Further, there is no need to assume that the process 
is regular, that is, nonexplosive. It might be that termination is caused by 
the process performing infinitely many transitions in a finite time. Thus, the 
present conditions can be used to provide quasistationary distributions for 
explosive processes. 

I study two types of quasistationary distribution, each of which 
involves conditioning on the event that the process does not terminate, or 
will not terminate in the distant future. This is related to the approach of 
Gaveau and Schulman (22) (see also Greensite and Halperin (23) and 
McGraw and Schulman(24)), whereby the process is conditioned on not 
exceeding a given level at any time in a specified interval. They consider the 
limit behavior as the length the time interval, and then the level, tend to 
infinity. 

2. P R E L I M I N A R I E S  

Consider a standard time-homogeneous Markov process (X(t), t >~ O) 
taking values in a countable state space S, with a stable conservative 
q-matrix of transition rates, that is, a collection Q = (qjk, J, k e S) of real 
numbers satisfying 

0 ~< qjk < o0, k r  j, k 6 S  

O<<.-qj/A=qj<oo, j 6 S  

q/k = 0, j e S  
k e S  

The quantity qj~ is the rate of the process from state j to state k and qj is 
the total rate out of state j. Of course there are many processes with this set 
of transition rates. I shall suppose that (X(t), t/> 0) is the minimal process, 
the one whose transition probabilities P, = (pjk(t), j, k ~ S) are the minimal 
solution to the backward differential equations. (12) This process may 
explode by performing infinitely many transitions in a finite time, since, for 
some collection of starting states, the times spent in successive states form a 
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sequence of random variables whose sum T might well be finite. The 
transition probabilities admit the following interpretation: 

p;k(t)=P{X(t)=k,t<T[X(O)=j},  j, kGS, t>~O (3) 

that is, pjk(t) is the probability that the process is in state k at time t after 
having performed at most a finite number of transitions starting in state j. 
It follows that 

P{T<~tIX(O)=j}=I-  ~ pjk(t), j ~ S  
k ~ S  

and so the process is regular, that is, nonexplosive, if and only if ej, given 
by 

e j = l - l i m  ~ pjk(t) 
t ~  ~ k ~ S  

the probability that the process explodes starting in state j, is equal to 0 for 
eachj  in S. It can be shown (:2) that this is equivalent to stipulating that the 
equations 

qjk~k = V~j, j6 S 
k e S  

possess no bounded, nontrivial, nonnegative solution ~ for some (and then 
for all) v > 0. It is often difficult to verify the existence or otherwise of such 
a solution. However, S finite or {qj, j G S} bounded is a sufficient condition 
for regularity. 

3. Q U A S I S T A T I O N A R Y  D I S T R I B U T I O N S  

The fact that the minimal process may explode gives rise to the 
possibility that some degree of quasistationarity might be evident, par- 
ticularly in the case when explosion is not a certainty or if the time to 
explosion is rather long. In the case where (X(t), t ~> 0) is not regular it is of 
interest, therefore, to determine if and under what conditions the usual 
limiting conditional distributions exist. These are 

lim P{X(t)=j]X(O)=i,A, ,B),  i, jGS 
t ~ c o  

(41 

and 

lim lira P{X(t)=j[X(O)=i,A,+s,B}, i, jGS (5) 
t ~ o o  s ~ c ~  
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where A, = {t < T} is the event that the process has not exploded by time t 
and B =  { T <  oo} is the event that the process will eventually explode. 
Thus I seek the limiting probability of being in state j given that the 
process has not terminated or [-in the case of (5)] will not terminate in the 
distant future, but that eventually it will. I condition on B to deal with the 
possibility that P(B) might be less than 1. 

Quasistationary distributions most commonly arise in connection with 
absorbing processes where they are used to describe the long-term behavior 
of the process before absorption occurs. In particular, limits of the form (4) 
and (5) are usually considered, but with At being the event that the process 
has not been absorbed by time t and B the event that it eventually will be. 
With little extra effort one can deal with processes that can terminate either 
by explosion or absorption. For  simplicity, suppose that S consists of an 
irreducible (transient) class C and an absorbing state 0. Write 

A~= {t < Tand  X(t)~ C} 

and 

B = { T <  cc or X(t) = 0 eventually} 

with the understanding that c~ k, given by 

~ = P { B I X ( O ) = k }  

is positive for some (and then for a l l )k  in C. 
The conditions for the existence of quasistationary distributions 

involve the solutions of the eigenvector equations 

mkq,+ = -#mj, j e  C (6) 
k e C  

and 

qjkxk = --#Xj, , je C (7) 
k E C  

where p is real and nonnegative. If C is a finite set of states, then one can 
always find positive solutions rn = (m j, j e C) and x = (xj, j e C) for some 
#/>0, for the q-matrix truncated to C possesses an eigenvalue, say - 2 ,  
with maximal real part which is real and negative, and, corresponding to it, 
there are unique positive left and right eigenvectors m and x. (13) Further, 
the limits (4) and (5) always exist and define proper probability 
distributions over C that do not depend on the initial state i; the first is 
given by 

mj/k~c mk' j e C  (8) 
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and the second by 
/ 

mix~~ ~ ml, xk, j~  C (9) 
/ k E C  

Note that since C is finite, the process cannot explode in C, and further 
assuming, as we must, that exit from C is possible, the process must even- 
tually be absorbed. If C is infinite, then the existence of quasistationary 
distributions is not guaranteed. First, it may not be possible to find positive 
solutions to (6) and (7) for any ~t~>0, and, even when it is possible, the 
solutions for a given/~ might not be unique. However, one can always find 
positive solutions to the corresponding systems of inequalities 

E mkqkJ~ -]zmj, jE C (10) 
k E C  

and 

qjkXk <~--ktXj, j ~ C  (11) 
k e C  

This is possible for all # ~> 0 up to some finite value 2, known as the decay 
parameter, a quantity that plays a fundamental role in the theory of non- 
stationary processes. Indeed I have shown (14) that positive solutions m and 
x exist if and only/f0 ~< # ~< 2. These solutions are said to be/~-subinvariant 
on C for Q, and ~t-invariant if equality holds for all j in C. I have also 
obtained (15/ necessary and sufficient conditions for /~-subinvariant quan- 
tities to be ~t-invariant. However, these conditions are usually difficult to 
verify in practice and so, in order to simplify matters, I henceforth assume 
that (6) and (7) possess positive solutions for at least one value of ~ I> 0. If 
no such solution exists, then certainly there can be no quasistationary dis- 
tributions. Denote by m and x the solutions corresponding to the maximal 
value/ i  of/~ for which a positive solution to both (6) and (7) is possible. 
Note that of necessity fi ~< 2. 

The conditions for the existence of quasistationary distributions, given 
below in Theorem 1, involve testing for the regularity or otherwise of one 
or other of two associated processes. These are the fi-reverse process, whose 
transitions rates O * =  (q~, j, k ~ C) are given by 

q~ = m~qkjmj, kC j ,  L k e C  

q, A= _qj .=qj_f i ,  j e C  

and the /i-dual process, which has transition rates Cl = (c?/k, j, k e C) given 
by 

~tjk = qjkXk/X/, k 4~ j, j, k �9 C 

EtsA= - @ = q s - f i ,  j e C  



Quasistationary Distributions 1213 

Observe that both Q* and CI are stable q-matrices over C and, owing to 
the/i-invariance of m and x, they are both conservative, that is, 

Z 2 Oj =0, 
k c C  k ~ C  

The /i-reverse process has a role analogous to the time-reversed process 
which arises in the theory of stationary processes. (16) The /i-dual, on the 
other hand, admits an interpretation as a conditioned process, one whose 
transition rates are defined conditional on the process never leaving C. ~17) 

The main result of the paper is the following theorem: 

Theorem 1. If one of Q* or (1 is regular and both of the conditions 

and 

mk~ k < oo (12) 
k e C  

m k X  k < O0 (13)  
k e C  

are satisfied, then the limits (4) and (5) exist and define proper probability 
distributions over C; the first is given by 

my:tj/ ~ mkC~k, j s  C (14) 
k e C  

and the second by 

mjxj/ ~ mkXk, j~ C (15) 
k c C  

Before proceeding with a proof of the theorem, I shall make a number 
of remarks relating to it. 

The condition that Zk mkxk converges is necessary for (15) to define a 
proper probability distribution over C. It shall be seen from the proof that 
its major role is to establish that C possesses the property of ).-positive 
recurrence. (18) If this were known in advance, then one could establish that 
(12) and (13) are sufficient conditions for the existence of the 
quasistationary distributions (4) and (5) by referring to the results of 
Vere-Jones ~19) and Flaspohler. (2~ Note also that the property of 
2-recurrence (18) is not used here as a premise in arriving at the conclusion 
that C is 2-positive recurrent, as it is, for example, in Kingman. I~s~ One 
need only check that just one of 12l* or (l is regular. This condition might 
seem rather unusual at first sight. However, if condition (13) is satisfied, 
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the ensuing ).-recurrence of C ensures that the regularity of one implies the 
regularity of the other, a fact which can easily be deduced from Theorem 2 
of Pollett. (15) 

I have noted tha t / i  ~< 2, the implication being that for ~ in the range 
l i<p~<2 there exist #-subinvariant quantities that are not strictly 
p-invariant. However, it can be seen from the proof of the theorem that if 
condition (13) is satisfied, the ensuing 2-recurrence of C also implies that 
/i = 2. Thus, I have provided a means of determining the decay parameter 
of C, at least under certain conditions, directly from Q. 

Theorem 1 bears some resemblance to Corollary 2 of Flaspohler. (2~ 
However, there the premise is that {qj, j e  C} be bounded. This condition 
is rather strong, although clearly not as stringent as the condition that C 
be finite. It is not satisfied, for example, by the Markov process used in 
modeling the autocatalytic reaction schemes described above. The con- 
dition immediately implies that Q is regular and, since q)* -- c?j = q; - /1  ~< q j, 
it also implies that both Q* and Cl are regular. 

Corollary 2 of Pollett (15) provides sufficient conditions for the 
regularity of Q* and Cl in the case when Q is regular and so they are not 
appropriate for use in calculating quasistationary distributions for 
explosive processes. A sufficient condition for Q* to be regular is that 
~2k mk converges, while a sufficient condition for the regularity of Q is that 
{xj} be bounded. Thus, if Q is regular and Zk m~ < 0% then provided 
~ k m k x k <  oe, for example, if {xj} is bounded, then the quasistationary 
distributions given by (14) and (15) exist. 

Proof. First observe that, by the Markov property, 

P{ B I X(t) = j, X(O) = i, A,} = P{ B I X(O) = j}  = ~+ 

and, using (3), that 

/ 

P{X(t)  = j [ X(O) =- i, A,} = pq(t)/ ~ pjk(t) 
k E C  

These two statements combine to give 

! 

P { X ( t ) = j l  X(0)=i ,  At, B} =pij(t)~j// ~ Pik(t)~k 
k e C  

(16) 

Using a similar argument, it is easy to show also that 

I 

P{X(t)  = j I X(O) = i, At+s, B} = po.(t) ~ Piktt)~k/ ~ p~k(t + S')~ 
k ~ C  k e C  

(17) 
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N o w  if one  of  Q* or  Q is regular ,  then ,  by  T h e o r e m  5.2 of Pol le t t ,  ~I7~ con-  

d i t ion  (13) impl ies  tha t  C is 2-posi t ive  recurrent .  U s i n g  C o r o l l a r y  5.1 of the 

same  paper ,  it fol lows tha t /~  = 2 a n d  so rn a n d  x are the u n i q u e  2 - i n v a r i a n t  
m e a s u r e  a n d  vec tor  o n  C for Q. C o m b i n i n g  P r o p o s i t i o n  2 of Tweedie  ~21/ 

a n d  T h e o r e m  4 of K i n g m a n ,  ~xS) we have  tha t  

e ~ t p o . ( t ) ~ x i m j /  ~ m k x  k, i , j ~ C  
I k E C  

Thus ,  m u l t i p l y i n g  the d e n o m i n a t o r  a n d  the n u m e r a t o r  of (16) by  e ; '  a n d  

those  of (17) by  e ~( '+ ')  a n d  t a k i n g  the l imi ts  specified by  (4) a n d  (5), as in 
the p r o o f  of T h e o r e m s  1 a n d  2 of  Flaspohler,(2~ achieves the  des i red result .  
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